Assignment 6.

This homework is due *Thursday*, October 15.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper and *credit your collaborators*. Your solutions should contain full proofs. Bare answers will not earn you much. Extra problems (if there are any) are due December 11.

1. Quick reminder

Measurable sets form a σ -algebra \mathcal{M} . The Lebesgue measure is a function $m: \mathcal{M} \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ defined as $m(A) = m^*(A)$.

The Lebesgue measure m has the following properties:

- $m(I) = \ell(I)$ for every interval I.
- m is translation invariant: for any $A \in \mathcal{M}$, for any $y \in \mathbb{R}$,

$$m(A+y) = m(A).$$

• m is countably additive, i.e. for measurable disjoint sets $\{A_k\}$,

$$m\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} m\left(A_k\right).$$

2. Exercises

- (1) (2.4.17) Show that the set E is measurable if and only if for each $\varepsilon > 0$, there is a closed set F and open set O for which $F \subseteq E \subseteq O$ and $m^*(O \setminus F) < \varepsilon$. (*Hint:* Use outer approximation of E by open sets and inner approximation of E by closed sets.)
- (2) (\sim 2.4.18) Let E have finite outer measure. Show that E is measurable if and only if there is an F_{σ} set F and a G_{δ} set G such that

$$F \subseteq E \subseteq G$$
 and $m^*(F) = m^*(E) = m^*(G)$.

(Terminology: a set that is a countable union of closed sets is called an F_{σ} set. A set that is a countable intersection of open sets is called a G_{δ} set.)

(3) (2.6.33) Let E be a nonmeasurable set of finite outer measure. Show that there is a countable collection of open set $\{O_k\}$ s.t. $G = \bigcap_{k=1}^{\infty} O_k$ contains E and

$$m^*(E) = m^*(G)$$
, but $m^*(G \setminus E) > 0$.

— see next page —

1

(4) The following theorem (Continuity of m from below; Theorem 2.5.15i) was proved in class.

Let $A_1 \subseteq A_2 \subseteq ...$ be a countable collection of measurable sets. Then

$$m\left(\bigcup_{k=1}^{\infty} A_k\right) = \lim_{k \to \infty} m(A_k).$$

(a) Granted that the above, prove the following (Continuity from above; Theorem 2.5.15ii):

Let $B_1 \supseteq B_2 \supseteq ...$ be a countable collection of measurable sets and $m(B_1) < \infty$. Show that

$$m\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} m(B_k).$$

(Hint: Complement of intersection is union of complements.)

- (b) (2.6.25) Show that the assumption $m(B_1) < \infty$ above is necessary.
- (5) (2.6.28) Let \mathcal{A} be some σ -algebra and $\mu: \mathcal{A} \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be a set function s.t. $\mu(\emptyset) = 0$. Show that continuity of μ together with finite additivity of μ implies countable additivity of μ .
- (6) (2.7.39) Let F be the subset of [0,1] constructed in the same manner as the Cantor set except that each of the intervals removed at nth deletion stage has length $\alpha/3^n$ with $0 < \alpha < 1$ (rather than $1/3^n$). Show that F is a closed set, $[0,1] \setminus F$ is dense in [0,1], and $m(F) = 1 \alpha$. Sets such as F are called generalized Cantor sets.

(Reminder: a set E is dense in [0,1] if any open interval in [0,1] contains a point from E.)

(7) (2.7.40) Show that there is an open set of real numbers that, contrary to intuition, has a boundary of positive measure. (*Hint:* Consider the complement of generalized Cantor set.)

(Reminder: for a set $A \in \mathbb{R}$, $x \in \mathbb{R}$ is a boundary point of A if for every $\varepsilon > 0$, interval $(x - \varepsilon, x + \varepsilon)$ contains a point from A and from A and from A and A boundary of a set A is the set of all its boundary points.)

(8) (2.7.44+) A subset A of \mathbb{R} is said to be *nowhere dense* in \mathbb{R} provided that every open set O has an open subset that is disjoint from A. Show that the Cantor set and the generalized Cantor set are nowhere dense in \mathbb{R} . Comment. Hence there are nowhere dense sets of positive measure.